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ABSTRACT 

The Joint Tactical Information Distribution System (JTIDS) is a hybrid frequency-

hopped, direct sequence spread spectrum system that employs a (31, 15) Reed-Solomon 

(RS) code for forward error correction coding. In this thesis, an alternative error 

correction coding scheme that uses concatenated coding with a (31, k ) RS inner code 

and a rate 4/5 convolutional outer code is considered. In addition, a sequential diversity 

of two, consistent with the JTIDS double-pulse structure, is considered both for soft 

decision (SD) RS decoding and for soft diversity combining with noise-normalization. 

Both coherent and noncoherent detection are considered. 

Based on the analyses, the alternative JTIDS waveform outperforms the original 

in all cases considered. When only additive white Gaussian noise is present, the best 

performances, which result in a gain of about 1.4 dB relative to the existing JTIDS 

waveform, are achieved for (31, 23) RS and (31, 25) RS inner codes for coherent 

detection and for (31, 27) RS and (31, 29) RS inner codes for noncoherent detection. For 

these RS inner codes, a 23.0% and 33.0% improvement in system throughput is achieved, 

respectively, for coherent detection, and a 44.0% and 55.0% improvement in throughput 

is achieved, respectively, for noncoherent detection relative to the existing JTIDS 

waveform. Noise-normalization neutralizes the effects of pulse-noise interference, but no 

significant benefits are obtained from using SD RS decoding. 
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EXECUTIVE SUMMARY 

Link-16 is a highly integrated system designed to support the tactical data information 

exchange requirements of military applications. It is the basic communication tool for 

combined operations and provides secure and jam-resistant digital communication for 

both data and voice.  

The Joint Tactical Information Distribution System (JTIDS) is the communication 

terminal of Link-16 and utilizes a (31, 15) Reed-Solomon (RS) code for channel coding, 

cyclic code-shift keying (CCSK) for 32-ary baseband symbol modulation, where each 

encoded symbol consists of five bits, and minimum-shift keying (MSK) for chip 

modulation. Transmission bandwidth and transmitter/receiver complexity are sacrificed 

for increased resistance to jamming and low probability of interception and detection, 

which are achieved by making use of frequency-hopping (FH) and direct sequence spread 

spectrum (DSSS) techniques. Finally, JTIDS uses the ultra high frequency (UHF) 

spectrum; hence, communications are limited to line-of-sight unless suitable relay 

platforms are available. 

In this thesis, an alternative error correction coding scheme for the physical layer 

waveform of the JTIDS, which is consistent with the existing JTIDS error control coding 

scheme, is examined. The system considered uses concatenated coding with a (31, k ) RS 

inner code and a rate 4 / 5  convolutional outer code. A sequential diversity of two, 

consistent with the JTIDS double-pulse structure, is assumed. In the receiver, soft 

decision RS decoding is employed to determine the transmitted symbols, and noise-

normalization is utilized in the receiver when additive white Gaussian noise (AWGN) 

and pulse-noise interference (PNI) are both present to neutralize the interference effects. 

The benefits of using noise-normalization are examined in situations where PNI is used 

to represent a typical jammed operating environment.  
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The performance obtained with the alternative waveform for various (31, k ) RS 

inner codes is compared with that obtained with the existing JTIDS waveform for the 

case where AWGN is the only noise present, as well as when both AWGN and PNI are 

present. 

Based on the analyses, the author concludes that the alternative, compatible 

JTIDS waveform has better performance than the existing waveform for both coherent 

and noncoherent detection in AWGN, and when both AWGN and PNI are present. The 

best performance for coherent detection was found to be for (31,23)  and (31,25)  RS 

inner codes, which results in a gain of about 1.4 dB and a 23.0%  and 33.0%  

improvement in system throughput, respectively, as compared to the existing JTIDS 

waveform. For noncoherent detection, best performance was found to be for (31,27)  and 

(31,29)  RS inner codes, which results in a gain of about 1.4 dB and 44.0%  and 55.0% 

throughput improvement, respectively. Soft decision RS decoding improves the overall 

performance less than 1.0 dB relative to hard decision decoding, and therefore the 

benefits are negligible. Finally, when both AWGN and PNI are present, the use of a 

noise-normalized receiver was found to cancel the effects of PNI, forcing the jammer to 

adopt a continuous, full-band jamming strategy. 
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I. INTRODUCTION  

A. THESIS OBJECTIVE 

This thesis has two main objectives. The first is to investigate an alternative error 

correction coding scheme for the Joint Tactical Information Distribution System (JTIDS) 

physical layer waveform that is consistent with the existing JTIDS error control coding 

scheme. The alternative system to be considered uses concatenated coding. The outer 

code is a rate 4 / 5 convolutional code and the inner code is a (31, k ) Reed-Solomon (RS) 

code. Alternating the value of k  and, therefore, the overall code rate, the RS code that 

results in the best performance improvement is obtained. The initial analysis considers 

additive white Gaussian noise (AWGN) for both coherent and noncoherent detection. A 

sequential diversity of two, consistent with the double-pulse structure of JTIDS, is 

assumed. Hence, each symbol is transmitted twice on two different carrier frequencies. 

Finally, the effect on performance when soft decision RS decoding is assumed is 

examined. 

The second main objective in this thesis is to examine the effects of using noise-

normalization in the receiver. In military applications, there are other considerations that 

supersede conventional ones, such as the ability to reject hostile jamming. A noise-

normalized receiver can minimize the effect of partial band interference/jamming, where 

jamming is spread over only a portion of the entire spread spectrum bandwidth. The 

system again uses the alternative error correction scheme with a diversity of two and soft 

decision RS decoding in both AWGN and pulse-noise interference (PNI) for both 

coherent and noncoherent detection. 

Previous research has examined various enhancements and modifications to the 

JTIDS waveform. In particular, concatenated coding was examined in [1] and [2]. 

However, this is the first time that concatenated coding in combination with noise-

normalization has been considered. 
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B. THESIS OUTLINE 

The thesis is organized into the introduction (Chapter I), background (Chapter II), 

and four additional chapters. An analysis of the performance of coherent and noncoherent 

32-ary cyclic code-shift keying (CCSK) with concatenated coding, diversity of two, and 

soft decision RS decoding in AWGN is presented in Chapter III. In Chapter IV, the 

performance of coherent 32-ary CCSK with concatenated coding in AWGN and PNI 

with a diversity of two, soft decision decoding, and noise-normalization is analyzed. The 

performance of noncoherent 32-ary CCSK with concatenated coding in AWGN and PNI 

with a diversity of two, soft decision decoding, and noise-normalization is considered in 

Chapter V. Finally, in Chapter VI the conclusions based on the results obtained from the 

analyses in the previous chapters are presented.  
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II. BACKGROUND 

A brief description of the alternative JTIDS system and a series of basic concepts 

that are required in order for the reader to understand the analysis of the alternative 

waveform are provided in this chapter. 

A. ALTERNATIVE LINK-16/JTIDS TYPE SYSTEM 

The existing JTIDS uses a 32-ary CCSK modulation scheme combined with a 

(31,15)  RS code. In this thesis, the alternative scheme employs concatenated coding, 

which uses two levels of coding. In the transmitter, at first, a rate 4 5  convolutional 

encoder is used and, after the bit-to-symbol converter, a RS encoder follows. After 

encoding, the proposed JTIDS signal is the same as the existing JTIDS signal. Before the 

CCSK modulation, a symbol interleaver is applied and prior to transmission the CCSK 

sequence is converted to a direct sequence spread spectrum (DSSS) signal via binary 

phase-shift keying (BPSK) spreading using a 32-chip pseudorandom noise (PN) 

sequence. Finally, minimum-shift keying (MSK) is used for the waveform modulation. 

MSK is a continuous phase modulation scheme with differential encoding of the chips. In 

this thesis, at the receiver, soft decision RS decoding is considered to further improve the 

performance of the system.  

The alternative JTIDS transceiver is shown in Figure 1. The top branch represents 

the transmitter and the bottom branch the receiver. At the receiver, the reception process 

is the reverse of the transmission process. After frequency de-hopping, MSK 

demodulation and de-scrambling, each 5-bit symbol is recovered by a CCSK 

demodulator. After symbol de-interleaving, the channel symbols are decoded by a RS 

decoder, and the inner code input symbols are recovered. Finally, a symbol-to-bit 

converter is applied before the convolutional decoder, which recovers the information 

bits. 
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Figure 1.   A JTIDS-type System Model Using the Alternative Error Control Coding 
Scheme (From [1]). 

1. Concatenated Codes 

 A concatenated code consists of two separate codes that are combined to form a 

larger code. The first code, which takes the information bits directly, is referred to as the 

outer code and the second code is referred to as the inner code. In this thesis, the inner 

code is a RS code, and soft decision decoding is performed at the receiver in the inner 

decoder. The outer code is a convolutional code, and the outer decoder is a hard decision 

decoder. 

 Considering the concatenated coding scheme in Figure 2, the outer encoder takes 

o
k  bits and generates an 

o
n -bit symbol. The inner encoder takes 

i
k  

o
n -bit symbols and 

generates 
i
n  

i
k -bit symbols. Thus, a concatenated block code having a block length 

i o
n n  

and containing 
i o
k k information bits is obtained.  

 The primary advantage of using concatenated coding is that a lower error rate is 

achieved than by using either of the constituent codes alone (RS or convolutional). The 

overall code rate of this concatenated code is [3] 

    i o
cc

i o

k k
r

n n
=       (2.1) 



 5

 The error probability of concatenated codes can be evaluated by first calculating 

the bit error probability of the inner code and then applying the result to the error 

probability of the outer code. 

 

Figure 2.   Block Diagram of Concatenated Coding Communication System (From [3]). 

2. Convolutional Codes 

A convolutional code is generated by passing the information bits to be 

transmitted through a finite state machine. Convolutional codes are linear and introduce 

redundant bits into the data stream through the use of linear shift registers. The code rate 

r  for a convolutional code is defined as 

    
k

r
n

=        (2.2) 

where n  is the number of output coded bits that are produced from k  input information 

bits. Any particular state depends only on a finite number of past information bits. For a 

code with 2n  states, the number of past information bits that determine a present state are 

between n  and kn  bits. The constraint length of the convolutional code is [4]  

    1K n= +       (2.3) 

where n  is the maximum number of shift registers. The shift registers store the state 

information of the convolutional encoder, and the constraint length relates to the number 
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of bits upon which the output depends. The output coded bits are obtained by the 

convolution (modulo-2) of the input information bits with the encoder generator 

sequences. In Figure 3, a rate 1 2  convolutional encoder is considered for illustration. 

The output sequences 
1
( )c x  and 

2
( )c x are multiplexed (parallel-to-serial conversion) into 

a single sequence c  for transmission that contains twice the number of information bits 

as the input stream. A convolutional code can become very complicated with various 

code rates and constraint lengths. 

 

Figure 3.   Rate 1 2  Convolutional Code with Constraint Length 3K =  (From [4]). 

Assume that 
2
( )P d  is the probability of selecting a code sequence that is a 

Hamming distance d  from the correct code sequence, and 
d

b  is the sum of all possible 

information bit errors. The union bound on the coded bit error probability can be obtained 

by weighting 
2
( )P d  with the information weight 

d
b  of all paths of Hamming weight d . 

Since there are k  information bits per branch for a rate r k n=  code, the union bound 

is given by [5] 

    2

1
( )

free

b d
d d

P P d
k

b
¥

=

£ å      (2.4) 
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where freed  is the free distance of the convolutional code . Free distance is defined as the 

minimum Hamming distance between any two code sequences. In order to evaluate the 

union bound for the bit error probability, one needs to calculate the pair-wise error 

probability 
2
( )P d , which is given by [5] 

   2
( 1)/2

( ) (1 )
d

k n k

k d

d
P d p p

k
-

= +

æ ö÷ç= ÷ -ç ÷ç ÷çè øå     (2.5) 

when d  is even and 

   /2 /2
2

/2 1

1
( ) (1 ) (1 )

2
2

d
d d k n k

k d

d
d

P d p p p pd
k

-

= +

æ ö÷ç æ ö÷ç ÷ç÷ç= - + ÷ -ç÷ç ÷÷ ç ÷çç è ø÷÷çè ø
å  (2.6) 

when d  is odd, where p  is the channel probability of bit error.  

In general, for a specific code rate and constraint length, it is best for the free 

distance to be as large as possible and 
d

b  to be as small as possible. Most good 

convolutional codes have been found by computerized searches of large numbers of 

codes to find those that best meet these criteria.  

In this thesis, a rate 4 5  convolutional encoder is considered. The weight 

structures of a = 4 5r  code are displayed in Table 1, where in this case K  denotes the 

total number of memory elements in the encoder (not the constraint length as before). For 

the proposed JTIDS alternate encoding scheme, the author considers the case where  

    31
freed
B =  and 5

free
d =     (2.7) 

when = 8K . 
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Table 1.   Generator Polynomials and Information Weight Structure for Rate 
4 5Convolutional Codes (From [5]). 

3. Symbol-to-bit Conversion 

 For equiprobable orthogonal signals, all symbol errors are equiprobable and occur 

with probability [6] 

    
1 1

.
1 2 1kM
=

- -
     (2.8) 

When a symbol error is made, not all the bits within the symbol are necessarily in error. 

There are 
k

n

æ ö÷ç ÷ç ÷ç ÷çè ø
 ways in which n  bits out of k  may be in error. Hence, the average number 

of bit errors per k -bit symbol is [6] 

    
1

1

1 2

2 1 2 1

kk

k k
n

k
n k

n

-

=

æ ö÷ç ÷ =ç ÷ç ÷ç - -è øå ,    (2.9) 

and the average bit error probability is the result in Equation (2.9) divided by k , the 

number of bits per symbol. Thus, [6]  

    
12

2 1

k

b Ek
P P

-

=
-

      (2.10) 

where EP  is the probability of symbol error for an M-ary orthogonal signal set. 
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4. Reed-Solomon (RS) Codes 

 RS codes are nonbinary, Bose-Chaudhuri-Hocquenghem (BCH) codes. The 

encoding is performed on symbols in the appropriate Golay field (GF) instead of on bits. 

There are m  bits per symbol. An ( , )n k  RS encoder takes k  information symbols and 

generates n  coded symbols. Thus, a code word has a total of mn  coded bits. A t -error 

correcting RS code is characterized in symbols as follows [4]: 

code word length   2 1n m= - ,     (2.11) 

parity-check block   2n k t- = ,     (2.12) 

minimum Hamming distance  min 2 1d t= + ,     (2.13) 

and symbol error-correcting capability t .     (2.14) 

 Reed-Solomon codes achieve the largest possible code minimum distance for any 

linear code with the same encoder input and output block length. For RS codes, 

orthogonal signaling with 2mM =  and hard decision decoding, the probability of symbol 

and bit error is [7] 

    
1

1
(1 )

n
i n i

s s s
i t

n
P i p p

in
-

= +

æ ö÷ç» ÷ -ç ÷ç ÷çè øå     (2.15) 

and 

    
2

1

1
(1 )

n
i n i

b s s
i t

nn
P i p p

in
-

= +

æ ö+ ÷ç» ÷ -ç ÷ç ÷çè øå    (2.16) 

respectively, where sp  is the probability of coded, or channel, symbol error, t  is the 

maximum number of corrected symbol errors per block, sP  is the probability of 

information symbol error and bP  is the probability of information bit error. Finally, 

( 1)n n+  in Equation (2.16) is the average number of bit errors per symbol error.  
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5. Symbol Interleaver 

Interleaving is frequently used in digital communications in order to improve the 

performance of forward error correction coding. Communication channels are not always 

memoryless; they can have memory. This means that the errors may be bursty and may 

not be independent.  

An example of a channel with memory is a channel with multipath fading where 

signals arrive at the receiver over two or more paths of different lengths. In this case, 

signals generally arrive out of phase with each other, and the cumulative received signal 

is distorted over the burst period. Interleaving the coded message before transmission and 

de-interleaving after reception ameliorates this problem, because errors can be handled by 

the decoder as if they were random errors. 

A symbol interleaver is a device that shuffles the symbols from several different 

code words so that the symbols from a specific code word are not transmitted 

sequentially. A symbol de-interleaver in the receiver reverses the process, putting the 

received symbols back into proper order before passing them on to the decoder. 

6. Cyclic Code-Shift Keying Baseband Symbol Modulation 

Cyclic code-shift keying is a modulation technique that utilizes a single M-chip 

baseband waveform to represent M symbols ( 2M k= ). The M-chip baseband waveform 

represents the all-zero symbol, whereas all remaining combinations of k  bits are 

represented by M–1 cyclical shifts of the initial M-chip baseband waveform [8]. 

In JTIDS, each 5-bit symbol is represented by a 32-chip sequence. The 32-CCSK 

unique chipping sequences are derived by cyclically shifting a starting sequence 0S , 

which is 01111100111010010000101011101100 , one place to the left at a time in order to 

obtain all possible combinations of five bits. This procedure is illustrated in Figure 4. In 

the receiver, determining which 5-bit symbol was received is accomplished by computing 

the cross-correlation between the received 32-chip sequence and all possible 32-chip 

sequences. The decision is made by choosing the 5-bit symbol corresponding to the 

branch with the largest cross-correlation. 
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Figure 4.   The 32-chip CCSK Sequences Chosen for JTIDS (From [9]). 

An analytical upper bound on the probability of symbol error for the 32-chip 

CCSK sequence for JTIDS is given by [10] 

   
32

32

0

32
(1 )

j

j j
S UB C C

j

P P P
j

z -

=

æ ö÷ç< ÷ -ç ÷ç ÷çè øå     (2.17) 

where sP  is the probability of demodulator symbol error, CP  is the probability of chip 

error at the output of the MSK chip demodulator, and 
jUBz  are the conditional 

probabilities of symbol error for CCSK. The conditional probabilities 
jUBz  of symbol 

error for the 32-CCSK sequence chosen for JTIDS are given in [10] and are reproduced 

in Table 2. 
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Table 2.   Conditional Probabilities of Symbol Error for the CCSK Sequence Chosen by 
JTIDS (From [10]). 

CCSK is a quasi-orthogonal modulation technique. Even though the probability of 

symbol error of the 32-chip CCSK is inferior to that of 32-orthogonal signaling, the 

advantage is that only one detector branch is required to recover the original symbol 

instead of thirty-two individual detector branches. 

7. Pseudorandom Noise 

In order to increase the transmission security of the JTIDS signal, the 32-chip 

CCSK sequence is scrambled (XOR) with a reference 32-chip PN sequence. The 

resulting sequence, after being modulated, is transmitted and appears to be a random 

signal because this signal appears to have the statistical properties of sampled white 

noise. Nevertheless, it is a deterministic periodic signal that is known only to the 

transmitter and the receiver and looks like noise to an unauthorized listener. 

8. Minimum-Shift Keying Chip Modulation 

Minimum-shift keying is a continuous binary frequency-shift keying (BFSK) 

modulation scheme with a minimum frequency spacing of 1 2 cT ( cT  is the chip duration). 
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This is the minimum separation for two FSK signals to be orthogonal; hence, this 

signaling technique is named “minimum-shift”. It is spectrally efficient with relatively 

low spectral sidelobes and can be detected either coherently or noncoherently.  

B. CHAPTER SUMMARY 

The first part of this chapter was a brief description of the alternative JTIDS 

encoding scheme. Afterward, a brief analysis of each part of the alternative structure was 

addressed. In the next chapter, the performance of the alternative JTIDS waveform that 

uses concatenated coding and soft decision RS decoding with a diversity of two is 

examined for a channel with only AWGN present. 
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III. PERFORMANCE ANALYSIS OF COHERENT AND 
NONCOHERENT 32-ARY CCSK WITH CONCATENATED 
CODING, DIVERSITY AND SD RS DECODING IN AWGN  

A. INTRODUCTION 

In this chapter, the author examines the performance of the alternative JTIDS 

waveform for both coherent and noncoherent detection. The quality of the performance is 

measured by analyzing the bit error probability versus b oE N , which is a version of 

signal-to-noise ratio (SNR) normalized by bandwidth and bit rate. The b oE N  required 

to achieve a designated level of performance is one of the most important figures of 

merit. It is dimensionless and allows a fair comparison of one system with another. 

In Figure 5, the receiver of the alternative JTIDS is reproduced for convenience. 

The probability of bit error bP  at the output of the convolutional decoder of the 

alternative JTIDS-type receiver is calculated by evaluating four probabilities 

consecutively. These probabilities are as follows: probability of channel chip error cp  at 

the output of the MSK chip demodulator, the probability of channel symbol error sp  at 

the output of the CCSK symbol demodulator, the probability of symbol error sP  at the 

output of the RS decoder, and the probability of bit error bp  at the output of the symbol-

to-bit converter. 

 

Figure 5.   Receiver Structure of a JTIDS-type System Using the Alternative Error 
Correction Coding Scheme (From [1]). 
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In this thesis, during the analysis of the compatible JTIDS-type waveform it is 

assumed that frequency de-hopping is perfectly synchronized with the frequency-hopped 

waveform and that de-scrambling is perfectly synchronized.  

First, coherent demodulation of the JTIDS waveform using the alternative error 

correction coding scheme in AWGN is considered, and subsequently, the performance 

for noncoherent demodulation in AWGN is examined. 

B. COHERENT DEMODULATION OF 32-ARY CCSK WITH DIVERSITY 
IN AWGN 

When a coherent matched filter or correlator is used to recover the data chips, 

MSK has the same error performance as BPSK, quadrature phase-shift keying (QPSK), 

and offset quadrature phase-shift keying (OQPSK) [8]. In this case, the probability of 

chip error is given by [8] 

    
2 c

c
o

E
P Q

N

 
   

 
     (3.1) 

where cE  is the average energy per chip, 0N  is the one-sided power spectral density 

(PSD) of the AWGN, and ( )Q x  is the Gaussian integral with argument a  given by 

    
2

2
1

( ) e .
2

y

Q a dy
ap

¥
-

= ò     (3.2) 

 In the transmitter, each 5-bit symbol is modulated with a 32-ary CCSK sequence, 

and each 5-bit symbol is represented by one of the cyclical shifts of a 32-chip starting 

sequence. For each symbol in the receiver, 

    5 32s b cE E E= =      (3.3) 

where sE  is the average energy per symbol, bE  is the average energy per bit, and cE  is 

the average energy per cyclical shift. Moreover, the forward error correction (FEC) 

coding that allows the receiver to detect and correct errors implies 

    
cb cc bE r E       (3.4) 
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where ccr  is the code rate of the concatenated code and 
cbE  is the energy per coded bit. 

Finally, the receiver receives the same symbol twice at different carrier frequencies 

(frequency diversity of 2L  ) 

    "5 5s b p bE E LE LE= = =  

    "b bE LE=       (3.5) 

where pE  is the average energy per pulse and "bE  is the average energy per bit per pulse. 

Equations (3.1) through (3.5) lead to a probability of channel chip error of 

    "

0

10
.

32
cc b

c

r LE
p Q

N

æ ö÷ç ÷= ç ÷ç ÷÷çè ø
     (3.6) 

The demodulation of a CCSK symbol is independent of the FEC coding. The 

analytic expression for the probability of channel symbol error of a JTIDS-type 

waveform is obtained from Equation (2.17) by replacing SP  and CP  with sp  and cp , 

respectively. That is,  

    
32

32

0

32
(1 )

j

j j
s UB c c

j

p p p
j

z -

=

æ ö÷ç= ÷ -ç ÷ç ÷çè øå    (3.7) 

where 
jUBz  are the conditional probabilities of channel symbol error given that j  chip 

errors have occurred in the received, de-scrambled 32-chip sequence, and cp  is given by 

Equation (3.6). 

 In order to achieve a large error-correcting capability with a long block length, the 

alternative JTIDS uses a concatenated code. That is, two shorter codes in series are 

employed. From the brief description in the previous chapter, the first code is the outer 

code ,( )o on k  with code rate o o or n k=  and is a rate 4 / 5  convolutional code, the second 

code is the inner code ,( )i in k  with code rate i i ir n k=  and is a RS code, and the overall 
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code rate of the waveform is cc i or r r= . The error probability of the concatenated codes is 

evaluated by first calculating the bit error probability of the inner code and then the error 

probability of the outer code. 

As discussed in Chapter II, the encoding/decoding for RS codes is performed on 

symbols instead of bits. If a memoryless channel is assumed, the probability of symbol 

error is given by Equation (2.15) 

    
1

1
(1 )

HD

n
i n i

s s s
i t

n
P i p p

in
-

= +

æ ö÷ç» ÷ -ç ÷ç ÷çè øå    (3.8) 

where sp  is the probability of channel symbol error in Equation (3.7). Since soft decision 

(SD) RS decoding is assumed, the error correcting capability t  is assumed to be 

     1SD HDt t t= + º     (3.9) 

where SDt  is the error correcting capability for SD RS decoding and HDt  is the error 

correcting capability for hard decision (HD) RS decoding. The probability of information 

bit error bP  of a JTIDS-type waveform is given by Equation (2.16), repeated below for 

convenience, 

    
2

1

1
(1 )

n
i n i

b s s
i t

nn
P i p p

in
-

= +

æ ö+ ÷ç» ÷ -ç ÷ç ÷çè øå    (3.10) 

and provides the probability of bit error at the output of the symbol-to-bit converter. The 

probability of bit error of convolutional codes was presented in the previous chapter and 

is reproduced here for convenience. The pairwise error probability when d  is even 

according to Equation (2.5) is 

    2
( 1)/2

( ) (1 )
d

k n k
b b

k d

d
P d P P

k
-

= +

æ ö÷ç= ÷ -ç ÷ç ÷çè øå    (3.11) 

where bP  the probability of bit error at the output of the symbol-to-bit converter in 

Equation (3.10) and d  is the free distance of the convolutional code. Finally, the bit error 

probability at the output of the rate 4 5 convolutional decoder is obtained from Equation 
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(2.4) by taking into consideration the values of 
freed
B and 

free
d  in Equation (2.7) and the 

pairwise error probability 2 ( )P d  in Equation (3.11). The bounded bit error probability in 

Equation (2.4) is reproduced below for convenience,  

    2

1
( )b

¥

=

£ å
free

b d
d d

P P d
k

     (3.12) 

where the first term in the sum dominates for reasonable values of 2 ( )P d . Equation (3.12) 

identifies the probability of error bounds used for coherent demodulation of the alternate 

JTIDS waveform in subsequent analysis.  

C. NONCOHERENT DEMODULATION OF 32-ARY CCSK WITH 
DIVERSITY IN AWGN  

Noncoherent MSK can be demodulated using either a matched filter envelope 

detector or a quadrature correlator-square detector. When either of these equivalent 

detectors is applied, their performance is identical to noncoherent BFSK [11]. The bit 

error probability of noncoherent BFSK is given by [8] 

     21

2
b oE N

bP e      (3.13) 

An alternative way of noncoherently detecting an MSK signal is by using a slope 

detector instead of matched filters or correlators. This method takes advantage of the fact 

that BFSK and MSK are digital FM signals, which means that the modulating 

information signals are digital. Therefore, both BFSK and MSK can be demodulated by a 

slope detector used for FM demodulation [11]. 

 

Figure 6.   Continuous-phase BFSK or MSK Demodulator with Slope Detector. The 
Signal ( )m t  is the Antipodal Information Signal (From [11]). 

cos 2f0t 

X

0

bT

 Threshold 
Detector 

m(t) 2H

1H

x 0Slope 
Detector 

IF 
Filter  



 20

A demodulator that uses a slope detector is illustrated in Figure 6. The IF filter is 

used in order to reject the out-of-band noise and restrict the frequency band of the signal. 

Its bandwidth is sufficiently broad so that the distortion of the modulated signal can be 

ignored. The demodulation is done by the slope detector, and the output is proportional to 

the angle of the input signal, assuming that the slope detector has an ideal characteristic. 

The integrator, with integration time bT , approximates a post-detection low pass filter. 

The polarity of the samples at the output of the threshold detector determines the 

transmitted bits. The bit error probability is given by [11] 

     0 .bE N
bP e      (3.14) 

Demodulation with a slope detector is superior to noncoherent demodulation with 

either a matched filter envelope detector or a quadrature correlator-square detector. 

Furthermore, its performance is approximately that of an optimum noncoherent 

differential phase-shift keying (DPSK) demodulator.  

When a diversity of two is employed, where each symbol is transmitted twice on 

two different carrier frequencies, the probability of error for binary DPSK is obtained 

from [6] 

    
1

2 1
0

1

2

c

o

nLE L
N c

nL
n o

LE
P e c

N






 
  

 
     (3.15) 

where 

    
1

0

2 11
.

!

L n

n
k

L
c

kn

 



 
  

 
      (3.16) 

 The probability of channel chip error for noncoherent demodulation is obtained 

from Equations (3.15) and (3.16) by taking into consideration Equations (3.1) through 

(3.5) to get 
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 The probability of channel symbol error sp  at the output of the CCSK symbol 

demodulator, the probability of symbol error sP  at the output of the RS decoder, the 

probability of bit error bp  at the output of the symbol-to-bit converter, and the probability 

of bit error bP  at the output of convolutional decoder are evaluated in the same way as for 

coherent demodulation using Equations (3.7) through (3.12). 

D. PERFORMANCE ANALYSIS OF COHERENT DEMODULATION OF 32-
ARY CCSK WITH DIVERSITY IN AWGN  

 Evaluating the overall probability of error of the system at the output of the 

convolutional decoder by applying Equations (3.1) through (3.12), the author tries to 

optimize the performance of the alternative waveform by changing the value of k  and, 

therefore, the code rate of the waveform. Specifically, substituting the code rates of the 

rate 4 5  outer convolutional encoder and the inner RS (31, k ) encoder into Equation 

(2.1), the code rate of the waveform is given by 

     
4

.
5 31cc

k
r =      (3.18) 

 The performance of the alternative waveform for various k  values and the 

performance of the existing JTIDS waveform are shown in Figure 7. The quality of the 

performance is measured by analyzing the bit error probability versus "b oE N , where a 

satisfactory probability of error for reliable communications is considered to be 

510bP -= . The ratio "b oE N  is the average energy per bit per pulse-to-noise power 

spectral density. It is obvious that in all cases the alternative compatible JTIDS-type 

waveform outperforms the existing waveform. Moreover, the best performances are 

achieved for RS (31, 23) and RS (31, 25) inner codes, where " 2.6b oE N  dB is required. 

For the same probability of error, the existing JTIDS waveform requires 4.0b oE N  dB. 

Thus, there is a gain of about 1.4 dB and an increase in system throughput of 

approximately 23.0%  and 33.0% , respectively. 
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Figure 7.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN for Coherent Demodulation, a Diversity of Two, and Soft 

Decision RS Decoding. 

E. PERFORMANCE ANALYSIS OF NONCOHERENT DEMODULATION 
OF 32-ARY CCSK WITH DIVERSITY IN AWGN  

 The overall probability of error at the output of the convolutional decoder for 

noncoherent demodulation is obtained in the same way as for the coherent case but using 

Equation (3.17) instead of Equation (3.6) for the evaluation of the probability of chip 

error. Once again, the author tries to optimize the performance of the alternative 

waveform by changing the value of k  and, therefore, the code rate of the waveform.  

 The performance of the alternative waveform for various k  values and the 

performance of the existing JTIDS are shown in Figure 8. The quality of the performance 

is evaluated by analyzing the bit error probability versus " ob
E N . It can be seen that in 

all cases the alternative compatible JTIDS-type waveform outperforms the original 
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waveform. Moreover, the best performances are achieved for the higher code rate 

waveforms and, specifically, for RS (31, 27) and RS (31, 29), which require 

" 4.6b oE N  dB. For the same probability of error, the existing JTIDS requires 

" 6.0b oE N  dB. Thus, there is again a gain of about 1.4 dB and an increase in system 

throughput of approximately 44.0%  and 55.0% , respectively. 
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Figure 8.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN for Noncoherent Demodulation, a Diversity of Two, and Soft 

Decision RS Decoding. 
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F. COMPARISON OF THE PERFORMANCES OF THE ALTERNATIVE 
WAVEFORM OBTAINED WITH COHERENT AND NONCOHERENT 
DEMODULATION OF 32-ARY CCSK WITH DIVERSITY IN AWGN  

For purposes of comparison, the performances obtained for both the coherent and 

noncoherent demodulation of the alternative waveform with RS (31, 23) and RS (31, 25) 

are plotted in Figure 9. In the case of coherent demodulation for 510bP -= , the 

alternative waveform for RS (31, 23) and RS (31, 25) requires " 2.6b oE N  dB, but for 

noncoherent demodulation, " 4.9b oE N  dB and " 4.7b oE N  dB are required, 

respectively. Hence, there is a gain of 2.3 dB or 2.1 dB, respectively, with coherent as 

opposed to noncoherent demodulation. 
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Figure 9.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN for RS (31, 23) and RS (31, 25) Inner Codes, Coherent and 

Noncoherent Demodulation, a Diversity of Two, and Soft Decision RS Decoding. 
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G. COMPARISON OF THE PERFORMANCES OF THE ALTERNATIVE 
WAVEFORM OBTAINED WITH HARD DECISION AND SOFT 
DECISION RS DECODING OF 32-ARY CCSK WITH DIVERSITY IN 
AWGN 

 This section examines the benefits of using soft decision RS decoding instead of 

hard decision RS decoding for both coherent and noncoherent case. In Figures 10 and 11, 

the results for RS (31, 23) and RS (31, 25) inner codes for coherent and noncoherent 

detection, respectively, are plotted. It is obvious that the advantages are negligible since 

the gain is less than 1.0 dB (approximately 0.5 dB) in both cases. Therefore, the price of 

having a simpler receiver with hard decision decoding is not high and is preferred. 
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Figure 10.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN for RS (31, 23) and RS (31, 25) Inner Codes, a Diversity of 

Two, Hard and Soft Decision RS Decoding, and Coherent Demodulation. 
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Figure 11.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN for RS (31, 23) and RS (31, 25) Inner Codes, a Diversity of 
Two, Hard and Soft Decision RS Decoding, and Noncoherent Demodulation. 

H. CHAPTER SUMMARY 

In this chapter, the effects of AWGN on the performance of the alternative 

waveform were examined. The author concluded that the performance of the existing 

waveform was inferior compared to the alternative waveform for both coherent and 

noncoherent demodulation. The benefits of using soft decision RS decoding in the 

receiver were trivial.  
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In Chapter IV, a different environment is considered where both AWGN and PNI 

are present. In such hostile conditions, noise-normalization is introduced in order to 

neutralize the effects of pulse interference. In Chapter IV, the alternative error correction 

coding scheme and the existing JTIDS waveform are examined for coherent 

demodulation only. Noncoherent detection performance for the alternative error 

correction coding scheme relative to the existing JTIDS is considered in Chapter V. 
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IV. PERFORMANCE ANALYSIS OF COHERENT 32-ARY CCSK 
WITH CONCATENATED CODING, DIVERSITY, SD RS 

DECODING AND NOISE-NORMALIZATION IN AWGN, AND 
PULSE-NOISE INTERFERENCE 

A. COHERENT DEMODULATION OF 32-ARY CCSK WITH DIVERSITY 
AND NOISE-NORMALIZATION IN AWGN AND PNI 

As discussed in the previous chapter, MSK can be viewed as a special case of 

OQPSK with sinusoidal pulse shaping. When a matched filter or correlator is used to 

recover the data chip, MSK has the same error performance as BPSK, QPSK, and 

OQPSK [8]. 

Suppose the receiver is attacked by a band-limited, noise-like signal that is turned 

on and off systematically. Let   be the fraction of time the jammer is turned on, and 

assume that the jammer does not turn on or off during a bit interval. Noise-normalization 

is used at the receiver in order to neutralize the effects of partial-band or pulse-noise 

interference and de-emphasize jammed hops with respect to unjammed hops. 

Next, consider the fast frequency-hopping (FFH)/BPSK noise-normalized 

receiver with diversity 2L   in Figure 12. After the voltage multiplier, which is 

commonly referred to as a mixer, and assuming perfect de-hopping, an integrator circuit 

integrates the signal over the duration of one hop (i.e., hT ). The integrator acts as a low 

pass filter and provides optimum detection in AWGN. The integrator output is 

normalized by the measured noise power k  of hop  . The decision variable z  of the 

receiver is formed by the analog summation of the noise-normalized integrator output z . 

The signal output is routed to a comparator where the final decision for the bit takes 

place. The influence of jammed hops on the overall decision statistics is minimized due 

to noise-normalization. 
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Figure 12.   FFH/BPSK Noise-normalized Receiver. 

If   is the fraction of the spread spectrum bandwidth that is jammed, then   is 

the probability that a hop is jammed, and 1   is the probability that narrowband 

interference is not present. The PSD of the partial-band noise interference is 2IN  . In 

addition to the narrowband interference, the signal also suffers from AWGN with PSD 

2oN . Thus, the total noise PSD is given by 
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If the equivalent noise bandwidth of the receiver is B  Hz, then for each jammed 

(subscript j ) and unjammed (subscript o ) hop, respectively, the noise power is given by 
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and 
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For a FFH/BPSK receiver with a fixed bit rate and diversity L , the hop rate is 

given by  

    b
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T
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L
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and the average energy per bit bE  is related to the average energy per hop hE  by  
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The random variable kx  at the integrator output is a Gaussian random variable 

with probability density function 
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with 2k cx A (Ac is the digital signaling waveshape amplitude). The noise-normalized 

integrator output z  is given by  
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The probability density function of the noise-normalized variable z  prior to 

diversity combining is  
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From Equation (4.8), it can be inferred that 2 1
kz   and 

2 c
k

k

A
z


 . 

The random variable z  results from the summation of the Gaussian random 

variables z . Therefore, it is also a Gaussian random variable with its mean and variance 

given by the following equations: 
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Consequently, when none of the hops is jammed, the mean of the random variable 

z  is obtained from Equation (4.9) and Equation (4.4) with 2L   to get 
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Similarly, if one of the hops is jammed, the mean of the random variable z  is  
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Finally, if both hops are jammed, the mean of the random variable z  is  
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The figure of merit for a digital receiver is the probability of bit error. For the 

receiver in Figure 12, this probability is given by [12] 
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Therefore, the probability of error when none of the hops are jammed ( 0bp ), when 

one out of two hops is jammed ( 1bp ), and when both hops are jammed ( 2bp ) are obtained 

by using Equations (4.11) through (4.13) in Equation (4.14) to get 

   
2 2

0

2
,

2
c b

b
o

A Tz
p Q Q

N

   
         

 

   0

2
,b

b
o

E
p Q

N

 
   

 
      (4.15) 

   

2

2
2

1

1 1

,
2 2

c b

o I o
b

A T
N N Nz

p Q Q


             
   
   

 
 

 

   
   

1 1 1

1 1
,

2b b o

b o b I

p Q E N
E N E N  

 
  
  

 (4.16) 

and         
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In JTIDS, at the receiver, an MSK coherent chip demodulator is used to recover 

the original scrambled 32-sequence on a chip-by-chip basis. Therefore, bT  must be 

replaced by cT  and bE  by cE in Equations (4.15), (4.16) and (4.17) to get 
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and 
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The relationship of average energy per chip cE  to the average energy per bit bE  

is obtained from Equations (3.3) through (3.5) and is given by 
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Finally, Equations (4.18), (4.19) and (4.20) become 
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and 
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After the 32-chip sequence is de-scrambled, the CCSK symbol demodulator 

detects the 5-bit symbol. The probability of symbol error given that i  hops are jammed 

was given in Equation (3.7) and is reproduced below for convenience:  
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The total probability of symbol error of a FFH system with a diversity of 2L   is  
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 The probability of symbol error sP  at the output of the RS decoder, the 

probability of bit error bp  at the output of the symbol-to-bit converter, and the probability 

of bit error bP  at the output of the convolutional decoder are evaluated in the same way as 

in Chapter III by applying Equations (3.8) through (3.12). 

B. PERFORMANCE ANALYSIS OF COHERENT DEMODULATION OF 32-
ARY CCSK WITH DIVERSITY AND NOISE-NORMALIZATION IN 
AWGN AND PNI 

In this paragraph, the performance of the alternative waveform as well as that of 

the existing JTIDS waveform for different values of r  is examined. The code rate ccr  of 

the alternative waveform is changed to optimize performance. In Figure 13, it is observed 

that the PNI, instead of degrading the performance of the alternative waveform relative to 

barrage noise interference, results in superior performance. This is the result of the noise-

normalized receiver, which de-emphasizes the jammed hops with respect to unjammed 

hops and thus minimizes the influence of jammed hops on the overall decision statistics. 

Furthermore, in Figure 13 it is observed that the alternative waveform converges to a 

specific value of error probability, at which point changes in r  do not affect the 

performance of the system. This value of course is different for different levels of 

0bE N .  
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Figure 13.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme for a RS (31, 25) Inner Code in Both AWGN and PNI for 0.1r= , 

0.3r= , 0.5r= , 0.7r=  and 1.0r= , Coherent Demodulation, Soft Decision 

RS Decoding, a Diversity of Two, Noise-normalization, and 0 7.0bE N = dB. 

In Figure 14, the alternative waveform with inner RS (31, 25) code is plotted. The 

fraction of time when the PNI is on remains constant and equal to 0.5r= . In this plot, 

the bit energy-to-noise power spectral density ( 0bE N ) is the variable that changes. 

When 0bE N  is near 6.0 dB, very small changes cause a huge difference in the system’s 

performance; for example, when 0bE N  increases from 6.0 dB to 6.5 dB, the system’s 

performance is improved about 1.1 dB. On the other hand, when such an increase occurs 

and 0bE N  is near 15.0 dB the system’s performance is not affected at all. Therefore, the 

system’s sensitivity depends significantly on the changes of 0bE N  when the signal 

power relative to noise is low.  
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Figure 14.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme for a RS (31, 25) Inner Code in Both AWGN and PNI for 0.5r= , 

Coherent Demodulation, Soft Decision RS Decoding, a Diversity of Two, and 
Noise-normalization when 0 6.0bE N = dB, 0 6.5bE N = dB, 0 10.0bE N = dB, 

0 14.5bE N = dB, 0 15.0bE N = dB. 

The performance results of the noise-normalized alternative waveform for various 

k  of the inner RS (31, k ) code and of the noise-normalized actual JTIDS waveform are 

summarized in Tables 3, 4 and 5. The quality of the performance is measured by 

analyzing the bit error probability versus b oE N , where the probability of error is taken 

to be 510bP -= .  
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From Table 3, which is based on Figures 15 though 19, it can be seen that the 

original JTIDS waveform and the alternative waveform for lower rate codes have very 

poor performance when 0 6.0bE N = dB. Only the higher rate codes (17 29k  ) yield 

satisfactory performances and, specifically, the most favorable are given by the RS (31, 

23) and RS (31, 25 ) codes. The use of the noise-normalized receiver neutralizes the 

effects of partial-band interference since the performance of the system for 1r<  relative 

to barrage noise interference ( 1r= ) is approximately the same or slightly better.  

 

bP  r  κ=15 
/b IE N  

(dB) 

κ=17 
/b IE N  

(dB) 

κ=19 
/b IE N

(dB) 

κ=21 
/b IE N

(dB) 

κ=23 
/b IE N

(dB) 

κ=25 
/b IE N

(dB) 

κ=27 
/b IE N  

(dB) 

Existing
/b IE N  

(dB) 
510-  0.1 inferior inferior 19.4 16.4 15.2 15.2 16.0 inferior 
510-  0.3 inferior inferior 19.75 17.1 16.1 15.93 16.4 inferior 
510-  0.5 inferior inferior 19.83 17.2 16.1 15.93 16.4 inferior 
510-  0.7 inferior inferior 19.92 17.2 16.2 15.9 16.4 inferior 
510-  1.0 inferior inferior 19.9 16.11 16.23 15.9 16.4 inferior 

Table 3.   Comparison of the Performance of the Original and the Alternative JTIDS 
Waveform for Different Values of r  for Coherent Demodulation when 

0 6.0bE N = dB. 

The summarized performance results for the alternative waveform and the 

existing JTIDS waveform in a more favorable environment where 0 10.0bE N = dB are 

shown in Table 4, which is based on Figures 20 through 24. In this case, the best 

performances are obtained for 0.1r= . It is clear that the performance of the system 

degrades as the fraction of time where the PNI is on (r ) increases. Moreover, in this case 

the worst performance is with barrage noise interference ( 1r= ). This phenomenon is 

due to the noise-normalized receiver and, thus, the jammer gains no advantage by using 

pulse-noise interference. Consequently, the jammer is obliged to spread its power over 

the entire spread spectrum bandwidth, thus reducing the maximum jamming power 

spectral density. 

Furthermore, the lower rate code alternative waveform has better performance 

than the higher rate code when 0.5r< . For example, when 0.3r=  the alternative 
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waveform with inner code RS (31, 15 ) compared to that with RS (31, 27 ) requires a 

signal-to-noise interference ratio ( /b IE N ) that is 3.8 dB less. Nevertheless, when r  

increases the alternative waveform has approximately the same performance for the 

various code rates ccr  (less than 1.0 dB difference). 

Finally, the actual JTIDS waveform with noise-normalization has poorer 

performance than the alternative waveform in all cases, but the benefits of noise-

normalization still exist for the original JTIDS waveform.  

 

bP  r  κ=15 
/b IE N  

(dB) 

κ=17 
/b IE N  

(dB) 

κ=19 
/b IE N  

(dB) 

κ=21 
/b IE N  

(dB) 

κ=23 
/b IE N  

(dB) 

κ=25 
/b IE N  

(dB) 

κ=27 
/b IE N  

(dB) 

Existing
/b IE N  

(dB) 
510  0.1 superior superior superior superior superior superior superior superior
510  0.3 2.7 2.7 2.7 3.5 4.4 5.5 6.5 9.0 
510  0.5 7.2 6.9 6.9 6.9 7.0 7.3 7.7 9.8 
510  0.7 8.2 7.8 7.6 7.5 7.5 7.6 7.8 10.0 
510  1.0 8.3 8.2 7.9 7.7 7.6 7.6 7.6 10.0 

Table 4.   Comparison of the Performance of the Original and the Alternative JTIDS 
Waveform for Different Values of r  for Coherent Demodulation when 

0 10.0bE N = dB. 

In Table 5, which is based on Figures 25 through 28, the summarized 

performance results for the alternative waveform and the existing JTIDS in an extremely 

favorable environment where 0 15.0bE N = dB are shown. Essentially, the same 

conclusions are reached as when 0 6.0bE N = dB. Specifically, the performance of the 

system degrades as the fraction of time when the PNI is on (r ) is increased, and the 

performance of the original JTIDS waveform with noise-normalization is poorer than the 

alternative waveform. The lower code rate alternative waveforms have better 

performance than the higher code rate waveforms when 0.7r<  instead of 0.5r<  

( 0 6.0bE N = dB case). Finally, noise-normalization is still effective for both the 

compatible JTIDS-type waveform and the existing waveform and, thus, the jammer is 

again forced to adopt full-band (barrage) interference. 
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bP  r  κ=15 
/b IE N  

(dB) 

κ=17 
/b IE N  

(dB) 

κ=19 
/b IE N  

(dB) 

κ=21 
/b IE N  

(dB) 

κ=23 
/b IE N  

(dB) 

κ=25 
/b IE N  

(dB) 

κ=27 
/b IE N  

(dB) 

Existing
/b IE N  

(dB) 
510  0.1 superior superior superior superior superior superior superior superior
510  0.3 superior superior superior superior superior 2.5 5.1 5.3 
510  0.5 4.0 4.6 5.1 5.5 5.9 6.3 6.7 8.0 
510  0.7 6.4 6.3 6.3 6.3 6.3 6.4 6.6 8.0 
510  1.0 7.0 6.6 6.4 6.2 6.1 6.1 6.1 7.7 

Table 5.   Comparison of the Performance of the Original and the Alternative JTIDS 
Waveform for Different Values of r  for Coherent Demodulation when 

0 15.0bE N = dB. 
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Figure 15.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.1r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 6.0bE N = dB. 
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Figure 16.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.3r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 6.0bE N = dB. 
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Figure 17.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.5r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 6.0bE N = dB. 
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Figure 18.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.7r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 6.0bE N = dB. 
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Figure 19.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 1.0r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 6.0bE N = dB. 
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Figure 20.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.1r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 10.0bE N = dB. 
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Figure 21.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.3r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 10.0bE N = dB. 
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Figure 22.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.5r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 10.0bE N = dB. 
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Figure 23.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.7r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 10.0bE N = dB. 
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Figure 24.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 1.0r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise -normalization, and 

0 10.0bE N = dB. 
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Figure 25.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.3r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 15.0bE N = dB. 



 46

0 2 4 6 8 10 12
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/NI (dB)

P
b

 

 

Alternative RS (31,15)
Alternative RS (31,17)
Alternative RS (31,19)
Alternative RS (31,21)
Alternative RS (31,23)
Alternative RS (31,25)
Alternative RS (31,27)
Existing Link-16/JTIDSExisting Link-16/JTIDS

 

Figure 26.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.5r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 15.0bE N = dB. 
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Figure 27.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 0.7r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 15.0bE N = dB. 
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Figure 28.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in Both AWGN and PNI for 1.0r= , Coherent Demodulation, Soft 

Decision RS Decoding, a Diversity of Two, Noise-normalization, and 

0 15.0bE N = dB. 

C. CHAPTER SUMMARY 

In this chapter, the performance of the alternative waveform with a diversity of 

two, soft decision RS decoding, and noise-normalization in AWGN and PNI was 

investigated for coherent demodulation. The impact of the noise-normalized receiver on 

the degradation of the effects of pulse-noise interference was shown to be an effective 

way to protect communication signals from hostile interference. The author concluded 

that the performance of the existing waveform was inferior as compared to the alternative 

waveform in all cases. In Chapter V, the performance of the alternative waveform is 

examined in the same conditions for noncoherent demodulation. 
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V. PERFORMANCE ANALYSIS OF NONCOHERENT 32-ARY 
CCSK WITH CONCATENATED CODING, DIVERSITY, SD RS 
DECODING AND NOISE-NORMALIZATION IN AWGN, AND 

PULSE-NOISE INTERFERENCE 

A. NONCOHERENT DEMODULATION OF 32-ARY CCSK WITH 
DIVERSITY AND NOISE-NORMALIZATION IN AWGN AND PNI 

Based on the analysis of noncoherent demodulation in Chapter III, the most 

effective way of detecting an MSK signal is by taking advantage of the fact that it is a 

digital FM signal and using a slope detector. The performance of a slope detector is 

approximated with that of an optimum noncoherent DPSK demodulator. DPSK is a 

special case of noncoherent orthogonal modulation with 2s bT T  and 2s bE E  [6]. For 

purposes of illustration, consider the quadrature-correlator square detector shown in 

Figure 29. 

 

Figure 29.   The Quadrature-correlator Square-law Detector for an Input Signal ( )s t  with 
Unknown Phase   (After [11]). 

The decision statistic in Figure 29 is a function of two independent random 

variables 1Y  and 2Y  that can be either Ricean or Rayleigh. In practice, the square root 

operation in Figure 29 is often omitted because the decision variable Y  produces the 

same decision as X . When the decision variable Y  is the sum of two squared-Gaussian 

s(t,) + n(t) Y 

t = T 

R(t) cos 2fct 

 0

T

 (   )2

t = T 
R(t) sin 2fct 

 0

T

 (   )2


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
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random variables with a non-zero mean, then Y  is a Ricean random variable with 

probability density function [11] 

      2 22

02 2

1
, 0

2

y a

y

ya
f y e I y



 
   
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   (5.1) 

where 

      2 2 2 2 2
0, 0,I Qa s T s T E    

and 

2
2 0 .

2

EN   

When the signal  s t  is not present, then Y  is simply the square root of the sum 

of two squared, zero-mean Gaussian random variables with variance 2 . Thus, Y  is a 

Rayleigh random variable with a probability density function  

     22
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, 0
2

y
y

x
f y e y


       (5.2) 

where 

   
2

2 0 .
2

EN   

Suppose the receiver is attacked by a band-limited, noise-like signal that is turned 

on and off systematically. As before, let   be the fraction of time the jammer is turned 

on and assume that the jammer does not turn on or off during a channel bit interval. The 

jammer’s PSD is 2IN  . With DPSK the assumption is that two consecutive bits either 

are jammed or unjammed, i.e., the case where one bit is jammed and the other bit is 

unjammed is neglected. This is valid if the jammed bit sequence is long. For a 

noncoherent detector, the probability of error for DPSK is equivalent to that of 

orthogonal BFSK with twice the SNR [6]. 

In this thesis, the effects of partial-band interference are minimized by using a 

noncoherent  noise‐normalized  receiver.  In  Figure  30,  a  BFSK  noise‐normalized 
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receiver is  illustrated  where  a  frequency  synthesizer  is  utilized  to  de‐hop  the 

receiving signal.  

 

Figure 30.   Noncoherent Noise-normalized FFH/BFSK Receiver (From [13]). 

From Equations (5.1) and (5.2), the probability density functions (pdf) of the 

random variables 1V   and 2V   are given by  
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where the signal is assumed to be present on branch 1. If 1z   and 2z   are the noise-

normalized random variables prior to diversity combining, then 
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V
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and 
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    2
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V
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The probability density function of the noise-normalized random variable 1z   

prior to diversity combining is obtained by using Equations (5.3) and (5.5) in 
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Likewise, from Equations (5.4) and (5.6), the probability density function of the noise-

normalized random variable 2z   is 
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Since each hop is assumed to be independent and i  out of L  hops are jammed, then 
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Taking the Laplace transform of Equations (5.9) and (5.10), the results are  
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and 
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where the j  subscript indicates a jammed hop. In order to compute the Laplace 

transforms of Equations (5.11) and (5.12), the following identities are used:  

a. Shifting property:  ( ) ( )ate f t F s a   ;      (5.13) 
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By applying the above properties to Equations (5.7) and (5.8), one gets the following:  
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Finally, combining Equation (5.11) with Equation (5.16) and Equation (5.12) with 

Equation (5.17) leads to  
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where 2

j  and 2
  are the noise power of jammed hop and unjammed hop, respectively. 

In order to calculate Equations (5.18) and (5.19) in the time domain, the inverse Laplace 

transform is obtained by taking advantage of the following properties: 
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and 
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Likewise for branch 2, where the signal is not present, 
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Finally, the random variables 1z  and 2z  are independent because their noise 

components are independent due to the orthogonality of the two signals. The error 

probability is equal to the average symbol error. Thus, when i  bits are jammed  
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Using the identities  
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and 

3.    ' ' 1 !m m            (5.28) 

and setting 1m L  , 
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1
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In order to evaluate the integral in Equation (5.29), the following identities are used: 
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Setting 1n L  , m n , 1a   and 
2 ( )

2
CjA n i

   in Equation (5.29), the following is 

obtained:  



 57

       

      
1

11
22

1 1 1 1 11
0 20 2

11
22

1 1 1 1 11
0 20 2

1
2

1 1
exp 2 ( ) exp ( )

2 !
2 2 ( )

1 1
exp 2 ( ) exp ( )

2 !
2 2 ( )

2 ( )
! exp

2

L

LL n

s L c c L n
n

c

LL n

L c c L n
n

c

L

C C

P i z z I A n i z A n i dz
n

A n i

z z j J jA n i z A n i dz
n

A n i

jA n i A
n



  

 


  

 




 
   

    
 

    
    

 
   

 





   

     

1

1 1

1
2

1
0 2 2

2
1

2 211
2 12

11 1
0 2 2

( ) 1 1
exp ( )

2 2 !
2 2 ( )

( )

2

( ) ( )1 1 1
exp 2 ( )

2 2 2 2
2 ( )

L

L L

L

C L n
n

C

L C
n

LL
LC C

C nLn L
n

C

n i
j A n i

n
A n i

A n i
L

A n i A n i
j j A n i L

A n i



 











 


 
   

    
 

  
 

   
      

     





 

 2 2 21 1
1

0 0 0

2

11( ) ( ) ( )1 1
exp exp

2 2 2 2 2 !

( )

2

L L n
LC C C
nn L n L

n n

C

L nA n i A n i A n i
L

n

A n i









 


 
  

        
                  

 
  
 

  
 

 
2 21

0 0

1( ) ( )1 1
exp .

2 2 ! 2

L n
c c

s n L
n

L nA n i A n i
P i

n



 




 

     
         

      (5.33) 

Recalling that DPSK is a special case of noncoherent orthogonal modulation with 

2s bT T  and 2s bE E , then 
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Substituting Equation (5.34) into Equation (5.33), the result is 
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where 
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 In JTIDS, an MSK chip demodulator is used at the receiver to recover the original 

scrambled 32-sequence on chip-by-chip basis. Hence, bT  must be replaced by cT  and bE  

by cE in Equations (5.35) and (5.36). Therefore, 
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 The relationship of average energy per chip cE  with the average energy per bit 

bE  is given by Equations (3.1) through (3.4) and results in 
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Finally, combining Equations (5.37), (5.38) and (5.39), one gets the chip error probability  
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After the 32-chip sequence is de-scrambled, the CCSK symbol demodulator 

detects the 5-bit symbol. The probability of symbol error given that i  hops are jammed is 

given by Equation (3.7) and reproduced below for convenience:  
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The total probability of symbol error of a FFH system with diversity of 2L   is  
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 The probability of symbol error sP  at the output of the RS decoder, the 

probability of bit error bp  at the output of the symbol-to-bit converter, and the probability 

of bit error bP  at the output of the convolutional decoder are evaluated in the same way as 

for coherent demodulation in Chapter III using Equations (3.8) through (3.12). 

B. PERFORMANCE ANALYSIS OF NONCOHERENT DEMODULATION 
OF 32-ARY CCSK WITH DIVERSITY AND NOISE-NORMALIZATION 
IN AWGN AND PNI 

 Noncoherent demodulation always has worse performance than coherent 

demodulation. Based on the analysis, both the alternative waveform and the original 

JTIDS waveform cannot achieve reliable communications when noncoherent detection is 

employed and / 7.0b oE N  dB. If / 8.0b oE N  dB, then only the higher code rate 

alternative waveforms can achieve satisfactory performance. However, in this case the 

signal power must be much higher than the noise interference power ( / 1b IE N  ). The 

use of the noise-normalized receiver again neutralizes the effects of partial-band 

interference since the performance of the system for 1r<  relative to barrage noise 

interference ( 1r= ) is approximately the same or better. These performance results are 

summarized in Table 6, which is based on the results shown in Figures 31 through 35. 

 

 

 

 



 60

bP  r  κ=15 
/b IE N  

(dB) 

κ=17 
/b IE N  

(dB) 

κ=19 
/b IE N

(dB) 

κ=21 
/b IE N

(dB) 

κ=23 
/b IE N

(dB) 

κ=25 
/b IE N

(dB) 

κ=27 
/b IE N  

(dB) 

Existing 
JTIDS 

/b IE N  

(dB) 
510  0.1 inferior inferior inferior inferior 23.0 19.7 18.4 inferior 
510  0.3 inferior inferior inferior inferior 23.4 19.9 18.6 inferior 
510  0.5 inferior inferior inferior inferior 23.3 19.9 18.6 inferior 
510  0.7 inferior inferior inferior inferior 23.5 20.0 18.5 inferior 
510  1 inferior inferior inferior inferior 23.5 20.0 18.6 inferior 

Table 6.   Comparison of the Performance of the Original and the Alternative JTIDS 
Waveform for Different Values of r  for Noncoherent Demodulation when 

0 8.0bE N = dB. 

As the signal-to-noise ratio /b oE N  increases, the benefits of using noise-

normalization become more obvious. In Table 7, the performance results of the 

alternative waveform with noise-normalization and those for the existing JTIDS 

waveform with noise-normalization when / 10.0b oE N  dB are summarized. The results 

presented in Table 7 are based on the results shown in Figures 36 through 40. 

 

bP  r  κ=15 
/b IE N  

(dB) 

κ=17 
/b IE N  

(dB) 

κ=19 
/b IE N  

(dB) 

κ=21 
/b IE N  

(dB) 

κ=23 
/b IE N  

(dB) 

κ=25 
/b IE N  

(dB) 

κ=27 
/b IE N  

(dB) 

Existing
JTIDS 

/b IE N  

(dB) 
510  0.1 superior superior superior superior superior superior superior 13.5 
510  0.3 14.9 13.0 11.8 11.2 11.1 11.2 11.6 16.3 
510  0.5 15.7 14.0 13.1 12.5 12.1 11.9 11.9 16.4 
510  0.7 15.9 14.3 13.2 12.6 12.2 11.8 11.7 16.4 
510  1 16.0 14.4 13.3 12.5 12.0 11.6 11.4 16.3 

Table 7.   Comparison of the Performance of the Original and the Alternative JTIDS 
Waveform for Different Values of r  for Noncoherent Demodulation when 

0 10.0bE N = dB. 

It can be inferred from Table 7 that the existing JTIDS waveform performs worse 

than the alternative one in all cases. For 0.1   (i.e., 10% jam interval) the performance 

with the alternative waveform is outstanding and always provides reliable 

communications. The higher rate code alternative waveforms have superior performance 
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as compared to the lower rate codes. The performance of the alternative waveform is not 

affected in a significant manner by increasing r  when 0.5r> . The noise-normalized 

receiver mitigates the effects of partial-band interference, and the interferer is forced to 

abandon the partial-band interference strategy and adopt full-band interference. Finally, 

the degradation of the performance of noncoherent demodulation relative to coherent 

demodulation is extremely large for both the alternative and the original JTIDS 

waveform. 

In Chapter III, it was observed that for the optimum alternative waveforms with 

either RS (31, 23) or RS (31, 25) inner codes in AWGN, where noise-normalization did 

not need to be employed, there was a gain of 2.3 dB and 2.2 dB, respectively, with 

coherent as opposed to noncoherent demodulation. Increasing the ratio /b oE N  by 3.0 

dB, the author investigates the difference in the performance of coherent and noncoherent 

demodulation in the new environment with both AWGN and PNI, and noise-

normalization is utilized to degrade the effects of pulse-noise interference on the overall 

performance of the system. In Table 8, the performance results for the alternative 

waveform with noise-normalization and those for the existing JTIDS waveform with 

noise-normalization when / 13.0b oE N  dB are shown. The results in Table 8 are based 

on the results shown in Figures 41 through 44. 

 

bP  r  κ=15 
/b IE N  

(dB) 

κ=17 
/b IE N  

(dB) 

κ=19 
/b IE N  

(dB) 

κ=21 
/b IE N  

(dB) 

κ=23 
/b IE N  

(dB) 

κ=25 
/b IE N  

(dB) 

κ=27 
/b IE N  

(dB) 

Existing
JTIDS 

/b IE N  

(dB) 
510  0.1 superior superior superior superior superior superior superior superior
510  0.3 superior superior superior superior 3.1 8.5 9.9 11 
510  0.5 10.1 10.0 10.0 10.0 10.1 10.2 10.3 12.1 
510  0.7 11.2 10.7 10.4 10.1 10.0 9.8 9.8 11.8 
510  1 11.3 10.6 10.1 9.8 9.5 9.2 9.1 11.3 

Table 8.   Comparison of the Performance of the Original and the Alternative JTIDS 
Waveform for Different Values of r  for Noncoherent Demodulation when 

0 13.0bE N = dB. 



 62

By comparing Tables 4 and 8, one can conclude that despite the difference of 3.0 

dB in 0bE N  between coherent and noncoherent demodulation (10.0 dB and 13.0 dB, 

respectively) the performance of the alternative waveform with either RS (31, 23) or RS 

(31, 25) inner codes and coherent demodulation is still better by 2.0 dB to 3.0 dB for the 

various values of r  examined. Therefore, in a hostile environment where pulse-noise 

interference and AWGN are present, the use of coherent demodulation at the receiver is 

more important, and the capability to employ coherent demodulation is a significant 

advantage in an electronic warfare environment. 

For comparison purposes, the performance results for the alternative waveform in 

extremely favorable transmitting conditions, where / 15.0b oE N  dB, are summarized in 

Table 9, which is based on the results shown in Figures 45 through 48. 

The alternative waveform again outperforms relative to the existing JTIDS 

waveform, especially, for the inner RS (31,  ) codes where   < 23 and   < 0.5. 

Finally, the degradation of the performance due to noncoherent demodulation instead of 

coherent demodulation is not as large as when / 10.0b oE N  dB. For   < 0.5 the 

performance of the alternative waveform with RS (31,  ) when   < 23 is outstanding. 

For larger values of   the difference does not exceed 5.0 dB, and as   increases the 

degradation due to noncoherent detection becomes smaller. 

 

bP  r  κ=15 
/b IE N  

(dB) 

κ=17 
/b IE N  

(dB) 

κ=19 
/b IE N  

(dB) 

κ=21 
/b IE N  

(dB) 

κ=23 
/b IE N  

(dB) 

κ=25 
/b IE N  

(dB) 

κ=27 
/b IE N  

(dB) 

Existing
/b IE N  

(dB) 
510  0.1 superior superior superior superior superior superior superior superior
510  0.3 superior superior superior superior superior 8.3 9.7 10.6 
510  0.5 9.3 9.4 9.5 9.6 9.7 9.8 9.9 11.5 
510  0.7 10.4 10.1 9.8 9.6 9.5 9.4 9.4 11.0 
510  1 10.3 9.8 9.4 9.1 8.8 8.6 8.5 10.3 

Table 9.   Comparison of the Performance of the Original and the Alternative JTIDS 
Waveform for Different Values of r  for Noncoherent Demodulation when 

0 15.0bE N = dB. 
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Figure 31.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.1r=  

when / 8.0b oE N  dB. 
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Figure 32.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.3r=  

when / 8.0b oE N  dB. 
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Figure 33.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.5r=  

when / 8.0b oE N  dB. 
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Figure 34.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.7r=  
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when / 8.0b oE N  dB. 
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Figure 35.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 1.0r=  

when / 8.0b oE N  dB. 
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Figure 36.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.1r=  
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when / 10.0b oE N  dB. 
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Figure 37.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.3r=  

when / 10.0b oE N  dB. 
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Figure 38.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.5r=  

when / 10.0b oE N  dB. 
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Figure 39.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.7r=  

when / 10.0b oE N  dB. 
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Figure 40.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 1.0r=  

when / 10.0b oE N  dB. 



 68

0 2 4 6 8 10 12 14 16
10

-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Eb/NI (dB)

P
b

 

 

Alternative RS (31,15)
Alternative RS (31,17)
Alternative RS (31,19)
Alternative RS (31,21)
Alternative RS (31,23)
Alternative RS (31,25)
Alternative RS (31,27)
Existing Link-16/JTIDS

Existing Link-16/JTIDS

 

Figure 41.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise -normalization in AWGN and PNI with 

0.3r=  when / 13.0b oE N  dB. 
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Figure 42.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.5r=  

when / 13.0b oE N  dB. 
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Figure 43.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.7r=  

when / 13.0b oE N  dB. 
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Figure 44.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 1.0r=  

when / 13.0b oE N  dB. 
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Figure 45.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.3r=  

when / 15.0b oE N  dB. 
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Figure 46.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.5r=  

when / 15.0b oE N  dB. 
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Figure 47.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.7r=  

when / 15.0b oE N  dB. 

6 8 10 12
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/NI (dB)

P
b

 

 

Alternative RS (31,15)
Alternative RS (31,17)
Alternative RS (31,19)
Alternative RS (31,21)
Alternative RS (31,23)
Alternative RS (31,25)
Alternative RS (31,27)
Existing Link-16/JTIDS

Existing Link-16/JTIDS

 

Figure 48.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 1.0r=  

when / 15.0b oE N  dB. 



 72

C. COMPARISON OF THE PERFORMANCE OF THE ALTERNATIVE 
WAVEFORM WITH SLOPE DETECTION OR WITH QUADRATURE-
CORRELATOR SQUARE-LAW DETECTION FOR NONCOHERENT 
DEMODULATION OF 32-ARY CCSK WITH DIVERSITY AND NOISE-
NORMALIZATION IN AWGN AND PNI 

The use of slope detectors, compared to demodulation with matched filters or 

correlators, is best in terms of performance. In Figures 49 through 52, the alternative 

waveform performance with inner RS(31, 23), RS(31, 25) and RS(31, 27) codes are 

plotted for both slope detection and matched filter detection when 0 12.0bE N = dB. The 

performance results for various values of   are summarized in Table 10. 

The alternative waveform in all cases has outstanding performance when 0.1  . 

As   increases, the degradation of the performance is very high when matched filters are 

employed instead of slope detectors, and this degradation can reach 10.0 dB. The noise-

normalized receiver still cancels out the effects of pulse-noise interference. 

 

bP  r  RS(31,23) 
/b IE N  

(dB) 
Matched 

filter 

RS(31,23)
/b IE N  

(dB) 
Slope 

detector 

RS(31,25)
/b IE N  

(dB) 
Matched 

filter 

RS(31,25)
/b IE N  

(dB) 
Slope 

detector 

RS(31,27) 
/b IE N  

(dB) 
Matched 

filter 

RS(31,27)
/b IE N  

(dB) 
Slope 

detector 
510  0.1 superior superior superior superior superior superior 
510  0.3 17.1 5.8 16.6 8.8 16.6 10.1 
510  0.5 17.4 10.5 16.9 10.5 16.6 10.5 
510  0.7 17.3 10.3 16.8 10.3 16.5 10.3 
510  1 17.4 10.0 16.7 9.8 16.3 9.6 

Table 10.   Comparison of the Performance of the Alternative Waveform for Different 
Values of r  for Noncoherent Demodulation with Matched Filter Detection and 

Slope Detection with 0 12.0bE N = dB.  

In AWGN, when slope detection is used, the performance of the alternative 

waveform with no diversity is improved about 3.0 dB relative to matched filter detection. 

How the sensitivity of these two different receivers is affected when AWGN and PNI are 

present is shown in Table 11. The results in Table 11 are based on the results shown in 

Figures 53 through 56. 
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bP  r  RS(31,23) 
/b IE N  

(dB) 
Matched 

filter 

RS(31,23)
/b IE N  

(dB) 
Slope 

detector 

RS(31,25)
/b IE N  

(dB) 
Matched 

filter 

RS(31,25)
/b IE N  

(dB) 
Slope 

detector 

RS(31,27) 
/b IE N  

(dB) 
Matched 

filter 

RS(31,27)
/b IE N  

(dB) 
Slope 

detector 
510  0.1 superior superior superior superior superior superior 
510  0.3 8.8 5.8 11.8 8.8 13.1 10.1 
510  0.5 13.5 10.5 13.5 10.5 13.6 10.5 
510  0.7 13.4 10.3 13.3 10.3 13.3 10.3 
510  1 13.0 10.0 12.8 9.8 12.6 9.6 

Table 11.   Comparison of the Performance of the Alternative Waveform for Different 
Values of r  for Noncoherent Demodulation with Matched Filter Detection with 

0 15.0bE N = dB and Slope Detection with 0 12.0bE N = dB. 
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Figure 49.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.3r=  

for Both Matched Filter and Slope Detection when / 12.0b oE N  dB. 
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Figure 50.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.5r=  

for Both Matched Filter and Slope Detection when / 12.0b oE N  dB. 
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Figure 51.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.7r=  

for Both Matched Filter and Slope Detection when / 12.0b oE N  dB. 
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Figure 52.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 1.0r=  

for Both Matched Filter and Slope Detection when / 12.0b oE N  dB. 
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Figure 53.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.3r=  

for Matched Filter Detection with / 15.0b oE N  dB and Slope Detection with 

/ 12.0b oE N  dB. 
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Figure 54.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.5r=  

for Matched Filter Detection with / 15.0b oE N  dB and Slope Detection with 

/ 12.0b oE N  dB. 
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Figure 55.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 0.7r=  

for Matched Filter Detection with / 15.0b oE N  dB and Slope Detection with 

/ 12.0b oE N  dB. 
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Figure 56.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme with Diversity and Noise-normalization in AWGN and PNI with 1.0r=  

for Matched Filter Detection with / 15.0b oE N  dB and Slope Detection with 

/ 12.0b oE N  dB. 

D. COMPARISON OF THE PERFORMANCE OF THE ALTERNATIVE 
WAVEFORM OBTAINED WITH HARD AND SOFT DECISION RS 
DECODING 

In this section, the benefits of using soft decision RS decoding instead of hard 

decision RS decoding in both AWGN and pulse-noise interference are examined. In 

Figures 57 through 60, the alternative waveform with RS (31, 23), RS (31, 25) and RS 

(31, 27) inner codes are plotted for various  . The performance results are summarized 

in Table 12. 
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bP  r  SD 
RS(31,23) 

/b IE N  

(dB) 

HD 
RS(31,23)

/b IE N  

(dB) 

SD 
RS(31,25)

/b IE N  

(dB) 

HD 
RS(31,25)

/b IE N  

(dB) 

SD 
RS(31,27) 

/b IE N  

(dB) 

HD 
RS(31,27)

/b IE N  

(dB) 
510  0.1 superior superior superior superior superior superior 
510  0.3 11.0 12.3 11.2 12.5 11.6 12.9 
510  0.5 12.1 12.8 11.9 12.6 11.9 12.7 
510  0.7 12.1 12.8 11.9 12.5 11.7 12.4 
510  1 12.0 12.6 11.6 12.2 11.4 12.0 

Table 12.   Comparison of the Performance of the Alternative Waveform for Different 
Values of r  for Noncoherent Hard and Soft Decision RS Decoding in AWGN 

and PNI with Noise Normalization when 0 8.0bE N = dB. 

Based on the results shown in Table 12, the advantage of using soft decision RS 

decoding in the receiver when 0.5   is negligible since the improvement does not 

exceed 1.0 dB. On the other hand, and up to a point, if the fraction of time when PNI is 

on is reduced, the employment of soft decision RS decoding results in higher gain. The 

least significant amount of improvement is observed for barrage noise interference 

( 1.0  ).  

In general, soft decision RS decoding outperforms hard decision, but the benefit 

of using it is marginal. Since hard decision decoding results in a simpler receiver, hard 

decision RS decoding is preferable. 
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Figure 57.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN and PNI with 0.3r= , Diversity, Noise-normalization, Hard 

and Soft Decision RS Decoding, and Noncoherent Demodulation. 
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Figure 58.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN and PNI with 0.5r= , Diversity, Noise-normalization, Hard 

and Soft Decision RS Decoding, and Noncoherent Demodulation. 
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Figure 59.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN and PNI with 0.7r= , Diversity, Noise-normalization, Hard 

and Soft Decision RS Decoding, and Noncoherent Demodulation. 
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Figure 60.   Performance of 32-ary CCSK Using the Alternative Error Correction Coding 
Scheme in AWGN and PNI with 1.0r= , Diversity, Noise-normalization, Hard 

and Soft Decision RS Decoding, and Noncoherent Demodulation. 
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E. CHAPTER SUMMARY 

In this chapter, the performance of the alternative waveform with a diversity of 

two, soft decision RS decoding, and noise-normalization in AWGN and PNI was 

investigated for noncoherent demodulation. The author concluded that the performance 

of the existing waveform was inferior when compared to the alternative waveform in all 

cases. The benefits of noise-normalization were shown to be very important since noise-

normalization successfully cancelled the effects of pulse-noise interference. Finally, the 

use of soft decision (with increased receiver complexity) instead of hard decision RS 

decoding does not significantly improve the overall performance of the system. 
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VI. CONCLUSIONS AND FUTURE WORK 

A JTIDS-type compatible waveform with an alternative error correction coding 

scheme, consistent with the existing JTIDS waveform, was examined in this thesis. The 

alternative scheme used a concatenated code with a (31, k ) RS inner code and a rate 

4 / 5  convolutional outer code. In the receiver, soft decision RS decoding was employed. 

The performance of the proposed waveform was analyzed for AWGN only, as well as for 

both AWGN and PNI. The effects of noise-normalization when PNI is present were 

investigated for both coherent and noncoherent demodulation. 

Based on the results of the analyses in this thesis, the alternative waveform was 

found to improve performance relative to the original JTIDS. Specifically, when only 

AWGN was present, the alternative waveform with a diversity of two outperformed the 

original by 1.4 dB for both coherent and noncoherent demodulation. 

When both AWGN and PNI were present, the alternative waveform again 

outperformed relative to the original JTIDS for all the cases considered. In this 

environment, noise-normalization was used in order to minimize the effects of pulse-

noise interference. The performance results were very satisfactory since the degradation 

due to PNI essentially was cancelled. Thus, one of the worst types of 

jamming/interference was effectively countered. 

The use of soft decision RS decoding was shown to have trivial benefits on the 

overall performance of the system relative to hard decision RS decoding. The 

improvement was negligible and, therefore, because of the increased complexity of soft 

decision receiver designs, this type of decoding is not recommended. 

Future work should consider self-normalization instead of noise-normalization to 

reduce the effects of PNI since self-normalization is more practical to implement than 

noise-normalization for a frequency-hopped system with a real hop rate as fast as JTIDS 

(more than 77,000 hops/sec). Additionally, the effect of more aggressive SD decoding 

should be investigated. In this thesis, a conservative estimate of one additional error  
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corrected per block was assumed. It has been shown that, in some circumstances, an 

increase of three or four additional errors corrected per block is both possible and 

practical [14]. 
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